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Abstract. Ponzano and Regge conjectured certain asymptotic formulae for Racah coefficients
with large angular momenta and gave convincing numerical evidence of their validity. We provide
rigorous proofs of their asymptotic formulae. We use generating functions to derive an integral
representation of Racah polynomials and then apply complex analytic methods to determine the
asymptotic behaviour of the Racah coefficients.

1. Introduction

The Racah–Wigner coefficients appeared in a paper by Racah [9] as a tool for the computation of
matrix elements in the theory of complex spectra. They have been defined as the transformation
coefficients between two different coupling schemes of any three angular momenta and have
proved to play an important role in the theories of atomic and nuclear spectroscopy [2].
The asymptotic properties of the angular momentum functions is of interest in any general
discussion of angular momentum theory [20, 2, 16].

In 1968, Ponzano and Regge [8] gave heuristic derivations of several asymptotic formulae
for the Racah coefficients (or 6-j symbols). They expressed the desire to find a rigorous proof
of their conjecture. In 1975, Schulten and Gordon [11] established a three-term recurrence
relation satisfied for the 6-j symbol. They noted in [12] that in the semiclassical limit the
recurrence relation tends to a differential equation. They then applied the WKB method to
the limiting differential equation to determine the asymptotic behaviour of its solution, and
concluded that the solution of the original three-term recurrence relation must have the same
asymptotic behaviour. This approach, contrary to the claim in [12], is not rigorous. Schulten
and Gordon’s approach, however, raises the interesting problem of finding a discrete analogue
of the Liouville–Green approximation [7] and the WKB method. This question was actually
raised in the earlier work of Ponzano and Regge [8]. The currently known discrete versions of
the WKB method [5, 6, 14] do not seem to be applicable to the Ponzano–Regge asymptotics.

This work grew out of an attempt to justify the Ponzano–Regge asymptotics. To the best
of our knowledge, a direct rigorous proof of the aforementioned asymptotic results has not
been found to date. The closest proof to be rigorous is in sections 6–8 of topic 9 in chapter 5 of
Biedenharn and Louck’s influential book [3]. The proof consists of deriving three fundamental
identities that characterize the Racah coefficients, stated as (5.8.3)–(5.8.5), and then shows that
the main terms in the Ponzano–Regge conjectured asymptotics satisfy these identities. This is
a very interesting proof but in the semiclassical limit under considerations the number of terms
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in the above-mentioned identities (5.8.3)–(5.8.5) depends on the large parameters and more
uniform estimates are needed to make the proof completely rigorous. The Biedenharn–Louck
proof is very geometric and its authors say that Ponzano and Regge were careful not to claim
a rigorous proof for their asymptotic results. Then they go on to say ‘In our opinion, their
(Ponzano and Regge’s) work constitutes the essential elements of a valid proof, and only details
(such as the proof of Racah’s identity given in section 8) needed explanation’. We feel that
Biedenharn–Louck’s proof retains many of the geometric approach in [8], but it is extremely
modest of Biedenharn and Louck to say that they merely filled in the details. Their proof takes
13 pages.

Our approach uses generating functions and the classical theory of hypergeometric
functions. A generalized hypergeometric functionpFq is defined as

pFq(a1, . . . , ap; b1, . . . , bq; z) = pFq

(
a1, . . . , ap

b1, . . . , bq

∣∣∣∣ z) = ∞∑
k=0

(a1)k . . . (ap)kz
k

(b1)k . . . (bq)kk!
(1.1)

where the shifted factorial(a)k is defined by

(a)k := a(a + 1) · · · (a + k − 1), k ∈ N (a)0 = 1. (1.2)

Note that (1.2) is equivalent to

(a)k = 0(a + k)

0(a)
(1.3)

whenk > 0, but (1.3) holds for all integers provided that the right-hand side is well defined.
The 3-j and 6-j symbols of quantum mechanics turned out to be multiples of generalized

hypergeometric functions. The 3-j symbols

(
a b e

d c f

)
, introduced by Wigner, are defined

[4, 2, 3] by(
a b e

d c f

)
= (−1)a−b−f δd+c,−f1(a, b, e)

×[(e − f )!(e + f )!(a + d)!(a − d)!(b + c)!(b − c)!] 1/2

×
∑
s

(−1)s [s!(e − b + d + s)!(e − a − c + s)!(a + b − e − s)!

×(a − d − s)!(b + c − s)!]−1 (1.4)

where1(a, b, e) is defined with (1.6).

The Wigner 6-j symbols

{
a b e

d c f

}
and the Racah coefficientsW(a, b, c, d; e, f ) are

defined (see [2, 3]) by{
a b e

d c f

}
= (−1)a+b+c+dW(a, b, c, d; e, f ) = 1(a, b, e)1(c, d, e)1(a, c, f )1(b, d, f )

×
∑
s

(−1)s(s + 1)!

(s − a − b − e)!(s − c − d − e)!(s − a − c − f )!(s − b − d − f )!

× 1

(a + b + c + d − s)!(a + d + e + f − s)!(b + c + e + f − s)! (1.5)

where1(a, b, e) is defined (see [2]) by

1(a, b, e) =
[
(a + b − e)!(a − b + e)!(−a + b + e)!

(a + b + e + 1)!

]1/2

. (1.6)
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The Racah polynomials{rn(λ(x);β, γ, δ)} are defined by

rn(λ(x);β, γ, δ) =4 F3

( −n, n + β −N,−x, x + γ + δ + 1
β + δ + 1, γ + 1,−N

∣∣∣∣ 1) (1.7)

n = 0, 1, . . . , N, where

λ(x) := [x + (γ + δ + 1)/2]2. (1.8)

For connection with orthogonal polynomials the reader may consult [1].
We shall writeF(R) ≈ G(R) if F(R)/G(R) = 1 +o(1) asR→∞, andF(R) ≈ G(R),

{φ(R)} if F(R)/G(R) = 1 +φ(R), whereφ(R)→ 0 asR→∞.
Ponzano and Regge [8] gave a heuristic argument to determine the main term in the

asymptotic development of certain 6-j symbols. In sections 2 and 3 we give a rigorous proof
of the the following asymptotics formulae predicted by Ponzano and Regge.

Theorem 1. The Wigner 6-j symbols (1.5) satisfy{
a b e

d +R c +R f +R

}
≈ (−1)a+b+e(2R)−1/2

(
a b e

c − f f − d d − c
)

{R−1}
(1.9)

and(
a b +R e +R
d c +R f +R

)
≈
{
(a + b − e)!(a + c − f )!(d + c − e)!(d + b − f )!
(a − b + e)!(a − c + f )!(d − c + e)!(d − b + f )!

}1/2−sign(e+f−b−c)

×(−1)a+d+min(b+c,e+f ) (2R)
−|b+c−e−f |−1

(|b + c − e − f |)! {R−1} (1.10)

asR→∞.

Theorem 2. Leta, b, c, andf be large positive integers (→∞) andf = o((min{a, b, e})1/2).
Then the 6-j symbols satisfy{

a b e

b a f

}
≈ (−1)a+b+e+f

√
(2a + 1)(2b + 1)

Pf (cosθ) {f 2/m} (1.11)

wherePf is the Legendre polynomial of degreef andθ is given by

cosθ = (a(a + 1) + b(b + 1)− e(e + 1))

2
√
a(a + 1)b(b + 1)

. (1.12)

Furthermore,{
a b e

b a f

}
≈ (−1)a+b+e+f

√
2π(a + 1/2)(b + 1/2)(f + 1/2) sinθ

× cos

((
f +

1

2

)
θ − π

4

) {
f 2

m
+

1

f 3/2

}
. (1.13)

Besides verifying (1.9) and (1.10) in section 2, and (1.11) and (1.13) in section 3, we
also estimate the first error terms. Our methods allow explicit computation of all error
terms, in particular we find the first error term in (1.10) to show that it is of O(R−1) and
not O(R−2) as claimed by Ponzano and Regge. Our proof of theorem 2 shows that the
condition thatf = O(min{a, b, e}) of Ponzano and Regge is not sufficient, we rather need
f = o((min{a, b, e})1/2).
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Figure 1. Coupling tetrahedron.

In section 4 we study the asymptotic behaviour, (see [7]), of the class of orthogonal
polynomials of a discrete variable defined with (1.7) and (1.8), the Racah polynomials.

The 6-j symbol (1.5) can be written as a multiple of a4F3 expression. Let{α1, α2α3, α4}
be any permutation of{a + b + e, c + d + e, a + c + f, b + d + f }, the perimeters of
the four sides of the tetrahedron on figure 1, and letα1 = max{α1, α2, α3, α4}. Let
{β1, β2, β3} = {a + b + c + d, a + d + e + f, b + e + c + f }, the numbers of the formS − x − y,
where(x, y) are the pairs of opposite edges in that tetrahedron, and letβ1 = min{β1, β2, β3}.
To write the sumS in (1.5) in terms of a4F3 we sets = α1 + l, l ∈ {0, 1, . . . , n}, where
n = β1− α1. Using the identity(A− l)! = (−1)lA!/((−A)l) we get

S =
n∑
l=0

(−1)α1+l(α1 + l + 1)!

l!(α1− α2 + l)!(α1− α3 + l)!(α1− α4 + l)!

× 1

(β1− α1− l)!(β2 − α1− l)!(β3− α1− l)!
= (−1)α1(α1 + 1)!

(α1− α2)!(α1− α3)!(α1− α4)!(β1− α1)!(β2 − α1)!(β3− a1)!

×4F3

(
α1 + 2, α1− β1, α1− β2, α1− β3

α1− α2 + 1, α1− α3 + 1, α1− α4 + 1

∣∣∣∣ 1) . (1.14)

The 3-j symbols are related to Hahn polynomials. Some interesting asymptotics of the Hahn
polynomials are in [19].

We shall use the Chu–Vandermonde sum (the terminating version of Gauss’s theorem),
Rainville [10],

2F1(−n, a; b; 1) = (b − a)n
(b)n

(1.15)

and the Pfaff–Kummer transformation, Rainville [10], Slater [13],

2F1(a, b; c; z) = (1− z)−a2F1(a, c − b; c; z/(z− 1)). (1.16)

Formula (1.16) is valid for|z| < 1 and Re(z) < 1
2, or if it terminates.
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We shall also use the Whipple transformation [17, 13]

4F3

( −n,A,B,C
D,E, F

∣∣∣∣ 1)
= (E − A)n(F − A)n

(E)n(F )n
4F3

( −n,A,D − B,D − C
D, 1− n +A− E, 1− n +A− F

∣∣∣∣ 1) (1.17)

which holds ifn is a non-negative integer andD + E + F = −n +A + B + C, as well as the
asymptotic formula, [7, equation (4.5.02)],

0(z + a)

0(z + b)
= za−b

[
1 +

(a − b)(a + b − 1)

2z
+ O(z−2)

]
(1.18)

asz→∞ with |arg(z)| 6 π − δ < π .
The Whipple transformation was used by Wilson [18] to derive a complete asymptotic

expansion for the4F3 in (1.17), asn → ∞, when−n + A,B,C,D,E do not depend onn.
The asymptotics treated here correspond toD = −N with n < N , so whenn→∞,N →∞
as well.

2. Proof of theorem 1

The coupling of angular momenta can be represented by the following diagram.

We associate the 6-j symbol

{
a b e

d c f

}
with figure 1. We are interested in finding

approximation formulae for the 6-j symbols when one or more edges of the tetrahedron tend
to infinity. We can picture the limiting process as one or more edges tend to infinity by
associating it with the partitions of 4, namely, 1 + 3, 2 + 2,1 + 1 + 2, and 1 + 1 + 1 + 1. If
one vertex tends to infinity then, in the tetrahedron, there are three fixed edges and three edges
that approach infinity. The four vertices are now divided into two groups in the 1 + 3 case, in
this case we may picture both groups tending to infinity but the second group, which contains
three vertices, goes to infinity in a cluster. This is essentially the confluence relation (1.9).

2.1. Proof of asymptotic formula (1.10)

This is the 2 + 2 case when all vertices tend to infinity but two nonadjacent edges remain
bounded. Our proof of (1.10) shows that in (1.10)φ(R) = O(R−1) and not O(R−2) as was
claimed by Ponzano and Regge [8].

Proposition 2.1. Assume thatn = b + d − f is the integer which determines the number of
terms in the4F3 terminating series in (1.14). Then{
a b +R e +R
d c +R f +R

}
=
{
(a − b + e)!(a − c + f )!(d − c + e)!(d − b + f )!

(a + b − e)!(a + c − f )!(d + c − e)!(d + b − f )!
}1/2

×(−1)a+b+c+d (2R)
−(e+f−b−c)−1

(e + f − b − c)!
×
(

1 +
(b + c + 1/2)2 − (e + f + 3/2)2

4R
+ O

(
1

R2

))
. (2.1)

Proof. As we have shown in section 1, the number of terms in the sumS in (1.5) isn + 1,
where (see (1.14)),n = β1 − α1. Since a triangle and a pair of opposite edges have exactly
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one edge in common, we must have thatα1 = a + c + f andβ1 = a + b + c + d. By (1.14) for
the sumS in (1.5) we have

S = p(a, c, f ; b, d, e)(−1)a+c+f

×4F3

( −b − d + f, , a + c + f + 2,−d − e + c,−b − e + a
c + f − b − e + 1, a + f − d − e + 1, a + c − b − d + 1

∣∣∣∣ 1)
wherep(a, c, f ; b, d, e) denotes the quantity

(a + c + f + 1)!

(c + f − b − e)!(a + f − d − e)!(a + c − b − d)!
×[(b + d − f )!(d + e − c)!(b + e − a)!]−1. (2.2)

AddingR ∈ N to b, e, c, andf does not change the numbersα1, β1, and the number of terms
in the terminating4F3 in (1.14), hence we obtain{
a b +R e +R
d c +R f +R

}
= 1(a, b +R, e +R)1(c +R, d, e +R)1(a, c +R, f +R)1(b +R, d, f +R)

×4F3

( −n, a + c + f + 2 + 2R,−d − e + c,−b − e + a − 2R
c + f − b − e + 1, a + f − d − e + 1, a + c − b − d + 1

∣∣∣∣ 1)
×(−1)a+c+f+2Rp(a, c +R, f +R; b +R, d, e +R)

= (2R)−2a−2d−2[(a + b − e)!(a − b + e)!(d + e − c)!(d − e + c)!

×(a + c − f )!(a − c + f )!(d + f − b)!(d − f + b)!] 1/2

×
(

1− (a + d + 1)(b + c + e + f + 2)

2R
+ O

(
1

R2

))
× (−c − d − e − 1− 2R)n(−b − d − f − 1− 2R)n

(a + f − d − e + 1)n(a + c − b − d + 1)n
4F3

×
( −n, a + c + f + 2R + 2, d + f − b + 1, c + f − a + 1 + 2R
c + f − b − e + 1, c + d + e + 2− n + 2R, b + d + f + 2− n + 2R

∣∣∣∣ 1)
×(−1)a+c+f (a + c + f + 2R + 1)![(c + f − b − e)!(a + f − d − e)!
×(a + c − b − d)!(b + d − f )!(d + e − c)!(b + e − a + 2R)!]−1 (2.3)

where we used that for fixed integersx, y, z, andR→∞,

1(x, y +R, z +R) = [(x + y − z)!(x − y + z)!] 1/2(2R)−x−1/2

×
(

1− (2x + 1)(y + z + 1)

4R
+ O

(
1

R2

))
(2.4)

which follows from

(p +M)!

(q +M)!
= 0(p +M + 1)

0(q +M + 1)
= Mp−q

(
1 +

(p − q)(p + q + 1)

2M
+ O

(
1

M2

))
(2.5)

for fixed integersp, q, andM → ∞ (see (1.18)). We also used the Whipple transformation
(1.17) withA = a+c+f +2+2R,B = −d−e+c,C = −b−e+a−2R,D = c+f −b−e+1,
E = a + f − d − e + 1, andF = a + c − b − d + 1.

Next we find the the asymptotics of the last4F3 expression asR→∞. For fixed numbers
k ∈ N, p and a largeM from (1.18) we have

(p +M)k = 0(p +M + k)

0(p +M)
= Mk

(
1 +

k(2p + k − 1)

2M
+ O

(
1

M2

))
. (2.6)
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Using (2.6) we get

(a + c + f + 2 + 2R)k(c + f − a + 1 + 2R)k
(c + d + e + 2− n + 2R)k(b + d + f + 2− n + 2R)k

= 1 +
k(b + c − e − f − 1)

2R
+ O(R−2).

(2.7)

Substituting these estimates in the last4F3 and using (4.4), for its asymptotics we get

2F1

( −n, d + f − b + 1
c + f − b − e + 1

∣∣∣∣ 1) +
1

2R
(b + c − e − f − 1)

(−n)(d + f − b + 1)

(c + f − b − e + 1)

×2F1

( −n + 1, d + f − b + 2
c + f − b − e + 2

∣∣∣∣ 1) + O
(
R−2

) = (c − d − e)n
(c + f − b − e + 1)n

+
1

2R

(c − d − e + n− 1)n(d + f − b + 1)

(c + f − b − e + 1)

(c − d − e)n−1

(c + f − b − e + 2)n−1
+ O(R−2)

= (c − d − e)n
(c + f − b − e + 1)n

(
1− 1

2R
n(d + f − b + 1) + O(R−2)

)
= (−1)n(d + e − c)!

(e + f − b − c)!
(c + f − b − e)!
(c + d − e)!

(
1− 1

2R
n(d + f − b + 1) + O(R−2)

)
(2.8)

sincec− d− e < 0, andd + e− c > n = b +d−f by assumption, where we also used (1.15)
and(α + 1)n = (α + n)!/α! for α > 0.

Similarly by (2.6) we get

(−c − d − e − 1− 2R)n(−b − d − f − 1− 2R)n
= (c + d + e + 2− n + 2R)n(b + d + f + 2− n + 2R)n

= (2R)2n
(

1 +
n(c + d + e + 2f + 3)

2R
+ O(R−2)

)
(2.9)

and by (2.5) we get

(a + c + f + 1 + 2R)!

(b + e − a + 2R)!
= (2R)2a+c−b+f−e+1

×
(

1 +
(2a + c + f − b − e + 1)(b + c + e + f + 2)

4R
+ O(R−2)

)
. (2.10)

We also have

(a + f − d − e + 1)n(a + c − b − d + 1)n = (a + b − e)!(a + c − f )!
(a + f − d − e)!(a + c − b − d)! . (2.11)

Substituting (2.11), (2.8), (2.9), and (2.10) in (2.3) we obtain (2.1). �
The asymptotic formula (1.10) follows from proposition 2.1 and the relation{

a b e

d c f

}
=
{
a e b

d f c

}
implied by (1.5).

Proof of asymptotic formula (1.9). This is the 1 + 3 case when all edges tend to infinity
with the same rate and three edges approach infinity in a cluster. We actually establish a more
general asymptotic formula of which (1.9) is a special case.

From (1.5) we have{
a b e

d +R c +R f +R

}
= 1(a, b, e)1(c +R, d +R, e)

×1(a, c +R, f +R)1(b, d +R, f +R)S(R) (2.12)
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whereS(R) is the sum from (1.5) withc, d, f replaced byc +R, d +R, f +R, respectively.
The index of the sums = 2R + O(1) throughout its range. Replacings by s + 2R we get

S(R) =
∑
s

(−1)s(s + 2R + 1)!

(s + 2R − a − b − e)!(s − αe)!(s − αa)!(s − αb)!(βe − s)!(βa − s)!(βb − s)!
(2.13)

whereαa = a+c+f , αb = b+d +f , αe = c+d +e, andβa = b+c+e+f , βb = a+d +e+f ,
βe = a + b + c + d, and the range ofs in (2.13) is max{αa, αb, αe} 6 s 6 min{βa, βb, βe}.

Applying (1.18) to the ratio(s + 2R + 1)!/(s + 2R − a − b − e)! in (2.13) we obtain
S(R) ≈ (2R)a+b+e+1S1, {R−1}, where

S1 =
∑
s

(−1)s

(s − αa)!(s − αb)!(s − αe)!(βa − s)!(βb − s)!(βe − s)! . (2.14)

Let {x, y, z} = {a, b, e} with αx = max{αa, αb, αe}. With s = αx + l we get

S1 =
n∑
l=0

(−1)αx+l

l!(αx − αy + l)!(αx − αz + l)!(βx − αx − l)!(βy − αx − l)!(βz − αx − l)! (2.15)

wheren + 1 is the number of terms inS1.
Next letS(a, b, e; d, c, f ) denote the sum in (1.4). From (1.4) we have

S(z, y, x;αx − αy + y − x, αz − αx + x − z, αy − αz + z− y)
=
∑
s

(−1)s [s!(αx − αy + s)!(αx − αz + s)!(z + y − x − s)!

×(z− y + x − αx + αy − s)!(y − z + x − αx + αz − s)!]−1 = (−1)αx S1.

(2.16)

Indeed ifx ′, y ′, andz′ denote the edges of the coupling tetrahedron opposite tox, y, andz,
respectively, then we haveαx = x+y ′+z′,αy = y+z′+x ′,αz = z+x ′+y ′, andβx = y+y ′+z+z′,
βy = z + z′ + x + x ′, βz = x + x ′ + y + y ′. Hence the second equality in (2.16) follows from
z + y − x = βx − αx , z− y + x + αy − αx = βy − αx , andy + αz − αx + x − y = βz − αx .

Furthermore, using thatαx − αy + y − x = y ′ − x ′, αy − αz + z − y = z′ − y ′,
αz − αx + x − z = x ′ − z′, andz− y − (z′ − y ′) = βx − 2(y − z′), from (1.4) and (2.16) we
obtain

(−1)αx+βx
(

z y x

y ′ − x ′ x ′ − z′ z′ − y ′
)
= (z + y ′ − x ′)!(z− y ′ + x ′)!(y + x ′ − z′)!

×(y − x ′ + z′)!(x + z′ − y ′)!(x − z′ + y ′)!S1

= (a + c − f )!(a − c + f )!(b + f − d)!(b − f + d)!

×(e + d − c)!(e − d + c)!S1. (2.17)

Then from (2.12), (2.4), the fact thatS(R) = (1 + O(R−1))S1, and (2.17) we obtain{
a b e

d +R c +R f +R

}
≈ (−1)a+b+e(2R)−1/2

×
(

x y z

y ′ − x ′ x ′ − z′ z′ − x ′
)

{R−1}. (2.18)

Formula (1.9) is the casex = e of (2.18). �
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3. Proof of theorem 2

We use a different approach to derive asymptotic formulae in theorem 2. It is based on an
integral representation of the4F3 hypergeometric functions given in proposition 3.2.

We first prove a lemma for certain2F1 functions.

Lemma 3.1. Let a1 6= 0, a2 6= 0, b1, b2, andc be real numbers,c 6= −l for any l ∈ N ∪ {0},
and lett ∈ C be a complex number. Then

E(x1, x2) := 2F1

(
a1x1 + b1, a2x2 + b2

c

∣∣∣∣ t

(a1a2x1x2)

)
− 0F1

( −
c

∣∣∣∣ t) = O

(
1

m

)
(3.1)

asm = min{x1, x2} → ∞, in the sense thatE(x1, x2) 6 C0/m for m > m0, whereC0 and
m0 > C0 depend on|a1,2|, |b1,2|, dist(c,Z), and|t | only.

Proof. We writeE(x1, x2) in the form

E(x1, x2) =
∞∑
k=1

1

(c)kk!

(
(a1x1 + b1)k

(a1x1)k

(a2x2 + b2)k

(a2x2)k
− 1

)
tk =:

∞∑
k=1

fk(x1, x2)t
k. (3.2)

From [7], section 3.8 we have the asymptotic formula

0(y) =
(y
e

)y (2π

y

)1/2

(1 +ω(y)) y →∞ (3.3)

whereω(y) = ( 1
12)y

−1 + O(y−2).
Fora > 0 and largex > 0,

(ax + b)k =
k−1∏
ν=0

(ax + b + ν) = 0(ax + b + k)

0(ax + b)
. (3.4)

From (3.4) and (3.3) we get

(ax + b)k
(ax)k

= 0(ax + b + k)

0(ax + b)(ax)k
=
(

1 +
k

ax + b

)ax+b−1/2

×
(

1 +
b + k

ax

)k 1

ek

(
1 +ω(ax + b + k)

1 +ω(ax + b)

)
. (3.5)

Let K ∈ N, K = O(xη) asx → ∞ with η ∈ (0, 1
2). Let a 6= 0 andb be fixed. For

k ∈ {0, 1, . . . , K} we have

(ax + b)k
(ax)k

=
k−1∏
j=0

(
1 +

b + j

ax

)
= 1 +

kb + k(k − 1)/2

ax

+
k∑
s=2

∑
J⊂{0,...,k−1}, |J |=s

1

(ax)s

∏
j∈J
(b + j). (3.6)

Then fork ∈ {2, . . . , K} we get∣∣∣∣ (ax + b)k
(ax)k

− 1− 2bk + k(k − 1)

2ax

∣∣∣∣ 6 k∑
s=2

(
k

s

)
(|b| + k)s
|ax|s

= (|b| + k)2
|ax|2

k−2∑
l=0

(
k

l + 2

)( |b| + k
|ax|

)l
6 (|b| + k)4
|ax|2

k−2∑
l=0

(
k − 2

l

)( |b| + k
|ax|

)l
= (|b| + k)4
|ax|2

(
1 +
|b| + k
|ax|

)k−2

6 (|b| + k)4
|ax|2 e(|b|+k)(k−2)/|ax| = O

(
k4

x2

)
(3.7)



546 L-C Chen et al

where we used the inequalities
(
k

l+2

) = k(k−1)/((l + 1)(l + 2))
(
k−2
l

)
6 k2

(
k−2
l

)
, and 1 +t 6 et

for t > 0.
From (3.6) and (3.7) we get

K∑
k=0

fk(x1, x2)t
k =

K∑
k=0

1

(c)kk!

((
b1

a1x1
+
b2

a2x2

)
k +

(
1

a1x1
+

1

a2x2

)
k(k − 1)

2

+O

(
k4

m2

))
tk

=
{(

b1

a1x1
+
b2

a2x2

)
t

c
0F1

( −
c + 1

∣∣∣∣ t)
+

(
1

a1x1
+

1

a2x2

)
t2

2c(c + 1)
0F1

( −
c + 2

∣∣∣∣ t)} + t2O

(
1

m2

)
(3.8)

where we used (4.4), and for the additional terms introduced with the0F1 expressions we used
the estimate (see (3.3))
∞∑

k=K+1

|t |k
|(C)k|k! 6

|t |K+1

d2(K + 1)!

∞∑
l=0

|t |l
(K + 2)l

6 |t |
Ke|t |

d2K!
= O

( |t |e
K

)K−1/2

= O

( |t |2
m2

)
(3.9)

with K = O(mη), η ∈ (0, 1
2), andd = dist(C,Z) > 0.

The O symbol in (3.8) depends only ona1,2, b1,2, c, and|t |.
As in (3.9) for the sum

∑∞
k=K+1 fk(x1, x2)t

k we get∣∣∣∣∣ ∞∑
k=K+1

fk(x1, x2)t
k

∣∣∣∣∣ 6 ∞∑
k=K+1

|t |k
|(c)k|k! = O

( |t |2
m2

)
(3.10)

for largem andK = [m1/3].
We setl = [|c|], l1 = l + 4, X1 = |a1|x1/2, X2 = |a2|x2/2, X = max{X1, X2},

Y = min{X1, X2}. Note thatY = O(m). For the sum of the first terms we have∣∣∣∣∣ ∞∑
k=K+1

(a1x1 + b1)k

(a1x1)k

(a2x2 + b2)k

(a2x2)k

tk

(c)kk!

∣∣∣∣∣ 6 |t |d2

∞∑
k=K

(|a1|x1 + |b1|)k
(|a1|x1)k

(|a2|x2 + |b2|)k
(|a2|x2)k

|t |kk[|c|]+2

(k!)2

6 |t |
d2

∞∑
k=K

4

e2k

(
1 +

2k

|a1|x1

)|a1|x1+|b1|+k (
1 +

2k

|a2|x2

)|a2|x2+|b2|+k |t |kkl
0(k)2

6 4|t |
d2

∞∑
k=K

(
1 +

k

X

)3X+k (
1 +

k

Y

)3Y+k |t |kkl
k2k−1

6 4|t |
d2

∫ ∞
K

(
1 +

s

X

)6X (
1 +

s

Y

)2s
(1 + |t |)ssl1−2s ds =:

2|t |
d2

∫ ∞
K

eF(s) ds (3.11)

where we used (3.3) and (3.5). We also used that for a fixedk > 0 the functiong(t) =
t ln(1+k/t) is increasing on [0,∞), sinceg(0) = 0 andg′(t) > 0 for t > 0. This positivity of
g′(t) follows fromg′(t) = ln(1 +k/t)− k/(t + k) > 0 for smallt > 0, g′(t)→ 0 ast →∞,
andg′′(t) = −k2/(t (k + t)2) < 0 for t > 0. At the end we used the inequalityk2k−1 > s2s−4,
for s ∈ [k, k + 1] and largek. We now have

F(s) = 6X ln(1 + s/X) + 2s ln(1 + s/Y ) + s ln(1 + |t |) + (l1− 2s) ln s.

Foru > 0, ln(1 +u) 6 u, hence forK 6 s 6 Y ,K = [m1/3] and largem,

F(s) 6 6s + 2s ln 2 + s ln(1 + |t |) + (l1− 2s) ln s 6 −s ln s.
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For s > Y , 1 + s/Y 6 es/Y , hence

F(s) 6 6s + 2s(1 + ln(s/Y )) + s ln(1 + |t |) + (l1− 2s) ln s

= s(8− 2 lnY + ln(1 + |t |)) + l1 ln s 6 −s ln Y

if m is large enough. Consequently,∫ ∞
K

eF(s) ds 6
∫ Y

K

s−s ds +
∫ ∞
Y

Y−s ds 6 YK−K + Y−Y / ln Y = O(YK−K) = O(m−2).

(3.12)

Then (3.1) follows from (3.8), (3.10)–(3.12). �
Lemma 3.1 will be used to verify asymptotic formulae (1.11) and (1.13). We consider the

6-j symbol

{
a + λ/2 b e + λ/2
b + λ a + λ/2 f

}
. To find the corresponding4F3 (to be denoted by

Af ) we use (1.14). In this case forλ > 0,

α1 = max{a + b + e + 2λ, a + b + e + λ, 2b + f + λ, 2a + f + λ} = a + b + e + 2λ

{β1, β2, β3} = {2a + 2b + 2λ, a + b + e + f + 2λ, a + b + e + f + λ}
and by (1.14) we get

Af = 4F3

( −f,−f + λ, e − a − b, a + b + e + 2λ + 2
λ + 1, a + e − b − f + λ, b + e − a − f + λ

∣∣∣∣ 1) . (3.13)

Proposition 3.2. Letf ∈ N, a, b, e, andλ be numbers for whichAf is well defined. Then

Af = f !(1− λ)f
(−a − e + b − λ + 1)f (−b − e + a − λ + 1)f

1

2π i

×
∮
Cr

2F1

( −a − e + b − λ + 1,−b − e + a − λ + 1
1− λ

∣∣∣∣ t)

×2F1

(
e − a − b, a + b + e + 2λ + 2

1 +λ

∣∣∣∣ t) t−f−1 dt (3.14)

whereCr = {t : |t | = r} andr < 1.

Proof. We first assume that none of the denominator parameters is a negative integer. We set
p = (a + b + e)/2.

Fork + 1, f ∈ N, k 6 f , and−A /∈ N ∪ {0} we have

(A)k = (A)f

(A + k)f−k
= (−1)k(−A− f + 1)f

(−A− f + 1)f−k
(3.15)

Then for every integerf > 0 we can writeAf in the form

Af =
f∑
k=0

(−f )k(λ− f )k(−2p + 2e)k(2p + 2λ + 2)k
k!(1 +λ)k(2p − 2b − f + λ)k(2p − 2a − f + λ)k

= f !(1− λ)f
(−2p + 2b − λ + 1)f (−2p + 2a − λ + 1)f

×
f∑
k=0

(−2p+2b − λ+1)f−k(−2p+2a − λ+1)f−k(−2p+2e)k(2p + 2λ+2)k
(f − k)!(1− λ)f−kk!(1+λ)k

.

(3.16)
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Therefore,
∞∑
f=0

Af
(−2p + 2b − λ + 1)f (−2p + 2a − λ + 1)f

f !(1− λ)f tf

= 2F1

( −2p + 2b − λ + 1, −2p + 2a − λ + 1
1− λ

∣∣∣∣ t)
×2F1

( −2p + 2e, 2p + 2λ + 2
1 +λ

∣∣∣∣ t) . (3.17)

Integrating this generating function onCr and using the Cauchy formula we establish
the integral representation (3.14). We then remove the assumptions on the denominator by
analytic continuation. �

Proposition 3.3. Let a, b, e, f → ∞, f ∈ N so thatm = min{p − a, p − b, p − e} → ∞
and f = o(m1/2), and λ fixed, be numbers for whichAf is well defined. Letρ =
p(p − e)/((p − a)(p − b)). Then

Af

f !(1− λ)f =
1

f !(1− λ)f 2F1

( −f, λ− f
1 +λ

∣∣∣∣− ρ)(1 + O

(
f 2

m

))
. (3.18)

Furthermore, theO term in (3.18) does not depend onf or m.

Proof. From the integral representation (3.14) withr = 1/(4(p − a)(p − b)), we obtain

Af (−2p + 2b − λ + 1)f (−2p + 2a − λ + 1)f r
f

= f !(1− λ)f
2π

∫ 2π

0
2F1

( −2p + 2b − λ + 1,−2p + 2a − λ + 1
1− λ

∣∣∣∣ reiθ

)
×2F1

( −2p + 2e, 2p + 2λ + 2
1 +λ

∣∣∣∣ reiθ

)
e−if θ dθ. (3.19)

Observe that the coefficient oftf in the power series expansion of

0F1

( −
1− λ

∣∣∣∣ t) 0F1

( −
1 +λ

∣∣∣∣− ρt) (3.20)

equals

f∑
k=0

(−ρ)k
k!(1 +λ)k(f − k)!(1− λ)f−k =

1

f !(1− λ)f 2F1

 −f,
l − f
1 +λ

∣∣∣∣∣∣− ρ


= (1 +ρ)f

f !(1− λ)f 2F1

( −f, 1 +f
1 +λ

∣∣∣∣ ρ

ρ + 1

)
= (1 +ρ)f

(1 +λ)f (1− λ)f P
(−λ,λ)
f

(
1− ρ
1 +ρ

)
(3.21)

where we used (3.15) withA = −f andA = λ− f for the first equality, the Pfaff–Kummer
transformation (1.16) for the second equality, and the hypergeometric series representation for
the Jacobi polynomials from [10],

P (α,β)n (x) = (α + 1)n

n!
2F1

( −n, n + α + β + 1
α + 1

∣∣∣∣ 1− x
2

)
. (3.22)
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Let H1(reiθ ) andH2(reiθ ) denote respectively the first and the second2F1 appearing in
(3.19), andh1(eiθ ) andh2(−ρeiθ ) denote respectively the first and the second0F1 appearing
in (3.20) witht = eiθ . We have∣∣∣∣ ∫ 2π

0
H1(re

iθ )H2(re
iθ )e−if θ dθ −

∫ 2π

0
h1(e

iθ )h2(−ρeiθ )e−if θ dθ

∣∣∣∣
=
∣∣∣∣ ∫ 2π

0
{(H1(re

iθ )− h1(e
iθ ))H2(re

iθ ) + (H2(re
iθ )

−h2(−ρeiθ ))h1(e
iθ )}e−if θ dθ

∣∣∣∣
6 M1 +M2

m
= O

(
1

m

)
(3.23)

uniformly in θ asm→∞, with

M1 = sup
|z|=1, m>m0

H2(re
iθ ) 6 sup

|z|=1
h2(−ρz) + 1

M2 = sup
|z|=1

h1(z)

where in the expression forM1,m0 is the constant from lemma 3.1 for the2F1 series defining
H2(reiθ ), and we have applied lemma 3.1.

Furthermore, from (3.7) we have

(4(p − a)(p − b))f
(−2p + 2a − λ + 1)f (−2p + 2b − λ + 1)f

= 1 + O

(
f 2

m

)
. (3.24)

Then (3.18) follows from (3.19), (3.20), (3.23), and (3.24). �
By (3.18), (3.21) and the identity for Jacobi polynomials (see [10]),P

(α,β)
n (x) =

(−1)nP (β,α)n (−x) we also have

Af

f !(1− λ)f =
(−1)f (1 +ρ)f

(1 +λ)f (1− λ)f P
(λ,−λ)
f

(
ρ − 1

ρ + 1

)(
1 + O

(
f 2

m

))
. (3.25)

From (3.25) and Darboux asymptotic formula for Jacobi polynomials [15]

P (α,β)n (cosθ) = (πn)−1/2(sin(θ/2))−α−1/2(cos(θ/2))−β−1/2

× cos((n + (α + β + 1)/2)θ − (α + 1/2)π/2) + O(n−3/2)

we obtain the following.

Corollary 3.4. Under the assumptions of proposition 3.3, we have

Af

f !(1− λ)f =
(−1)f (1 +ρ)f

(1 +λ)f (1− λ)f
1√
fπ

(
sin

θ

2

)−λ−1/2(
cos

θ

2

)λ−1/2

× cos

((
f +

1

2

)
θ −

(
λ +

1

2

)
π

2

)(
1 + O

(
f 2

m

)
+ O

(
f −3/2

))
(3.26)

whereθ = arccos((ρ − 1)/(ρ + 1)).

By the definition ofρ = p(p − e)/((p − a)(p − b)) andθ = arccos((ρ − 1)/(ρ + 1))
we have

cosθ = p(p − e)− (p − a)(p − b)
p(p − e) + (p − a)(p − b) =

2p(a + b − e)− 2ab

4p2 − 2p(a + b + e) + 2ab

= (a + b)2 − e2 − 2ab

2ab
= a2 + b2 − e2

2ab
. (3.27)
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This expression agrees (asymptotically) with (1.12).
To verify (1.13) and (1.11) we setλ = 0 in (3.26) and the 6-j in the beginning of the

section. From (1.5), (1.14) and (3.26) we get{
a b e

b a f

}
= 1(a, b, e)21(a, a, f )1(b, b, f )S

= (2p − 2e)!(2p − 2b)!(2p − 2a)!

(2p + 1)!

(
(2a − f )!f !(2b − f )!f !

(2a + f + 1)!(2b + f + 1)!

)1/2

× (−1)a+b+c(2p + 1)!

(2p − 2b − f )!(2p − 2a − f )!(2p − 2e)!f !2
Af

= (−1)a+b+e+f (2p − 2b − f + 1)f (2p − 2a − f + 1)!

((2a − f + 1)2f+1(2b − f + 1)2f+1)1/2

(4ab)f

(2p − 2a)f (2p − 2b)f

×cos((f + 1/2)θ − π/4)(
(πf/2)1/2

) (
1 + O

(
f 2

m

)
+ O

(
f −3/2

))
= (−1)a+b+e+f cos((f + 1/2)θ − π/4)√

π(2a − f + 1)(2b − f + 1)(f/2) sinθ

(
1 + O

(
f 2

m

)
+ O

(
f −3/2

))
(3.28)

if f = o(m1/2), where we applied (3.7) withx = 2p − 2a, 2p − 2b, 2a, and 2b, andk = f
or 2f to the four ratios in the fourth line. In a main term sense (3.28) is the same as (1.13)
or (1.11) with error of the ratio of order{f 2/m + f −3/2}. In fact the first error term and the
order of the second error term in these asymptotics formulae can be found explicitly using
lemma 3.1. Our proof shows that (3.27) gives the right value of cosθ in (1.11), and it is also
simpler than (1.12).

4. Asymptotics for Racah polynomials

In deriving the asymptotics for the Racah polynomials (1.7) for a fixedx ∈ N, we consider
three cases when one or more of the integers(n), (N), (N − n > 0) approaches infinity. For
the last case we shall need another formula for the Racah polynomials which is obtained by
applying the Whipple transformation (1.17) withA = −x,B = n+β−N ,C = x +γ + δ + 1,
D = γ + 1,E = β + δ + 1, andF = −N :

rn(λ(x);β, γ, δ) = 4F3

( −n, n + β −N,−x, x + γ + δ + 1
β + δ + 1, γ + 1,−N

∣∣∣∣ 1)
= (β + δ + x + 1)n(−N + x)n

(β + δ + 1)n(−N)n
×4F3

( −n,−x, γ − β +N − n + 1,−x − δ
γ + 1,−x − β − δ − n,−x +N − n + 1

∣∣∣∣ 1) . (4.1)

Case 1.N →∞, n-fixed.
Fora, b, andk ∈ N fixed and|N | → ∞ we have

(a +N)k
(b +N)k

=
k∏
j=1

(
1 +

a − b
b +N + j − 1

)
= 1 +

(a − b)k
N

+ O

(
1

N2

)
(4.2)

since 1/(N + c) = 1/N − c/(N(N + c)) = 1/N + O(N−2) as|N | → ∞. Then from (1.7) we
get

rn(λ(x);β, γ, δ) = 3F2

( −n,−x, x + γ + δ + 1
β + δ + 1, γ + 1

∣∣∣∣ 1)
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− (n + β)

N

nx(x + γ + δ + 1)

(β + δ + 1)(γ + 1)
3F2

( −n + 1,−x + 1,−x + γ + δ + 2
β + δ + 2, γ + 2

∣∣∣∣ 1)
+O

(
1

N2

)
(4.3)

where we used the identity (withs = 1)
n∑
k=0

(−n)k(a)k(b)k
(e)k(f )kk!

(k − s + 1)s = (−n)s(a)s(b)s
(e)s(f )s

3F2

( −n + s, a + s, b + s
e + s, f + s

∣∣∣∣ 1) (4.4)

for s = 1, 2, . . . , n, which follows from (1.1).

Case 2.N →∞, n→∞ andN − n = m with m being a fixed positive integer.
Fork 6 m by (4.2) we have

(−n)k
(−N)k =

(n− k + 1)k
(n +m− k + 1)k

= 1− mk
n

+ O

(
1

n2

)
. (4.5)

Fork ∈ {m + 1, . . . , n} we get

(−n)k
(−N)k =

(n− k + 1)m
(n + 1)m

=
m∏
j=1

(
1− k

n + j

)
= 1− k

m∑
j=1

1

n + j

+
m∑
s=2

(−k)s
∑

J⊂{1,...,m},|J |=s

∏
j∈J

1

n + j

= 1− mk
n

+ O

(
k

n2

)
+

m∑
s=2

(−k)s
(
m

s

)(
1

ns
+ O

(
1

ns+1

))
= 1− mk

n
+ O

(
k2

n2

)
. (4.6)

In the asymptotic formulae in this and the next case we shall use possibly nonterminating
3F2 and2F1 series. We need the following estimate:

∞∑
k=n

(a1)k . . . (ap)k

(b1)k . . . (bp−1)kk!
= O(nA−B) (4.7)

where none of thebj ’s is a negative integer, andA := ∑p

j=1 aj < B := ∑p−1
j=1 bj . Indeed

from (1.2) and (3.3) we have

(a)k = O

(
(a + k)a+k−1/2

ea+k

)
= ka+k−1/2

ek
O

(
e−a

(
1 +

a

k

)a+k
)
= O

(
ka+k−1/2

ek

)
for k > n→∞. Then the sum (4.7) is bounded from above by an absolute constant times

∞∑
k=n

kA−B−1 6
∫ ∞
n−1

xA−B−1 dx = (n− 1)A−B

B − A = O(nA−B).

From (1.7), (4.5), (4.6), (4.4), and (4.7) withA− B = −m− 16 −2 we obtain

rn(λ(x);β, γ, δ) = 3F2

( −m + β,−x, x + γ + δ + 1
β + δ + 1, γ + 1

∣∣∣∣ 1)
−m
n

(m + β)(−x)(x + γ + δ + 1)

(β + δ + 1)(γ + 1)
3F2

×
( −m + β + 1,−x + 1, x + γ + δ + 2

β + δ + 2, γ + 2

∣∣∣∣ 1) + O

(
1

n2

)
. (4.8)
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Case 3. N → ∞, n → ∞, andN − n → ∞ simultaneously, andn ∼ N − n, that is,
C−1 6 n/(N − n) 6 C for some constantC > 1. We now assume thatβ + δ + 1 > 0,
γ + 1> 0, and to assure convergence in the2F1’s appearing in the final asymptotics formula
we also assume thatx > −(δ + γ )/2. Thenx + β + δ > 0. To find the asymptotics of
rn(λ(x);β, γ, δ) in this case we use (4.1) and several estimates that appear below.

We will use (1.18) to show that for a fixedc > 0 and largen ∈ N,

(−n)k
(−n− c)k = 1 +

ck

n
+ O

(
k2

n2

)
(4.9)

uniformly for k = 0, 1, . . . , n. Indeed fork 6 n/2 we have

(−n)k
(−n− c)k =

(n− k + 1)k
(n + c − k + 1)k

= 0(n + 1)0(n + c − k + 1)

0(n− k + 1)0(n + c + 1)

= n−c(n− k)c
(

1− c(1 + c)

2n
+ O

(
1

n2

))(
1 +

c(c + 1)

2(n− k) + O

(
1

(n− k)2
))

=
(

1− k
n

)c (
1 +

c(c + 1)k

2n(n− k) + O

(
1

n2

))
= 1 +

ck

n
+ O

(
k2

n2

)
where we used (1.18) withM = n andM = n − k, and that 1/(n − k) 6 2k/n for
k = 1, . . . , [n/2].

For k > n/2, O(k/n) = O(k2/n2) = O(1), and since(n− k + 1)k/(n + c − k + 1)k < 1
we get (4.9) in this case as well.

Next, sincem ∼ n, thenm + k ∼ n, and from (1.18) we get

(m + a)k
(m + b)k

= 0(m + k + a)0(m + b)

0(m + a)0(m + k + b)
=
(

1 +
k

m

)a−b (
1 +

(a − b)(a + b + 1)k

m(m + k)
+ O

(
1

m2

))
= 1 +

(a − b)k
m

+ O

(
k2

m2

)
. (4.10)

From (4.9) withc = x + β + δ > 0, and (4.10) witha = γ − β + 1 andb = −x + 1 we get

(−n)k
(−n− c)k

(m + a)k
(m + b)k

= 1 +
ck

n
+
(a − b)k
m

+ O

(
k2

n2

)
. (4.11)

Furthermore, using (1.18) we obtain

(β + δ + x + 1)n
(β + δ + 1)n

= 0(β + δ + x + 1 +n)0(β + δ + 1)

0(β + δ + 1 +n)0(β + δ + x + 1)

= nx

(β + δ + 1)x

(
1 +

x(2β + 2δ + x + 1)

2n
+ O

(
1

n2

))
(4.12)

and
(−N + x)n
(−N)n = (m− x + 1)n

(m + 1)n
= 0(N − x + 1)0(m + 1)

0(m− x + 1)0(N + 1)

= N−x
(

1 +
x(x − 1)

2N
+ O

(
1

N2

))
mx

(
1− x(x − 1)

2m
+ O

(
1

m2

))
= (m/N)x

(
1− x(x − 1)n

2mN
+ O

(
1

n2

))
. (4.13)

Substituting (4.11)–(4.13) into (4.1) we obtain

rn(λ(x);β, γ, δ) = mxnx

(m + n)x
1

(β + δ + 1)x
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×
(

1− x(x − 1)n

2m(m + n)
+
x(2β + 2δ + x + 1)

2n
+ O

(
1

n2

))
×
{

2F1

( −x,−x − δ
γ + 1

∣∣∣∣ 1) +

(
(β + δ + x)

n
+
(γ − β + x)

m

)
x(x + δ)

(γ + 1)

×2F1

( −x + 1,−x − δ + 1
γ + 1

∣∣∣∣ 1) + O

(
1

n2x+δ+γ+1

)}
(4.14)

where we used (4.7) withA− B = −2x − δ − γ − 1< −1.
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